Butterfly Plots for Visual Analysis of Large Point Cloud Data
نویسندگان
چکیده
Visualization of 2D point clouds is one of the most basic yet one of the most important problems in many visual data analysis tasks. Point clouds arise in many contexts including scatter plot analysis, or the visualization of high-dimensional or geo-spatial data. Typical analysis tasks in point cloud data include assessing the overall structure and distribution of the data, assessing spatial relationships between data elements, and identification of clusters and outliers. Standard point-based visualization methods do not scale well with respect to the data set size. Specifically, as the number of data points and data classes increases, the display quickly gets crowded, making it difficult to effectively analyze the point clouds. We propose to abstract large sets of point clouds to compact shapes, facilitating the scalability of point cloud visualization with respect to data set size. We introduce a novel algorithm for constructing compact shapes that enclose all members of a given point cloud, providing good perceptional properties and supporting visual analysis of large data sets of many overlapping point clouds. We apply the algorithm in two different applications, demonstrating the effectiveness of the technique for large point cloud data. We also present an evaluation of key shape metrics, showing the efficiency of the solution as compared to standard
منابع مشابه
A novel method for locating the local terrestrial laser scans in a global aerial point cloud
In addition to the heterogeneity of aerial and terrestrial views, the small scale terrestrial point clouds are hardly comparable with large scale and overhead aerial point clouds. A hierarchical method is proposed for automatic locating of terrestrial scans in aerial point cloud. The proposed method begins with detecting the candidate positions for the deployment of the terrestrial laser scanne...
متن کاملConditional Random Fields for Airborne Lidar Point Cloud Classification in Urban Area
Over the past decades, urban growth has been known as a worldwide phenomenon that includes widening process and expanding pattern. While the cities are changing rapidly, their quantitative analysis as well as decision making in urban planning can benefit from two-dimensional (2D) and three-dimensional (3D) digital models. The recent developments in imaging and non-imaging sensor technologies, s...
متن کاملComprehensive Analysis of Dense Point Cloud Filtering Algorithm for Eliminating Non-Ground Features
Point cloud and LiDAR Filtering is removing non-ground features from digital surface model (DSM) and reaching the bare earth and DTM extraction. Various methods have been proposed by different researchers to distinguish between ground and non- ground in points cloud and LiDAR data. Most fully automated methods have a common disadvantage, and they are only effective for a particular type of surf...
متن کاملSclow Plots: Visualizing Empty Space
Scatter plots are mostly used for correlation analysis, but are also a useful tool for understanding the distribution of high-dimensional point cloud data. An important characteristic of such distributions are clusters, and scatter plots have been used successfully to identify clusters in data. Another characteristic of point cloud data that has received less attention so far are regions that c...
متن کاملEffect of Aquatic and Land–base Plyometric Exercise on Selected Biomechanical Parameters of Butterfly Swimming in Elite Male Adolescent Swimmers10-14 years
Introduction and Purpose: The swimming start is very important for achieving better results in competitions. The Purpose of this study was to compare the effects of two plyometric training techniques both in aquatic and on land in two start techniques (grab and track) of butterfly swimming in Elite male adolescent Swimmers.Methodology: 20 elite male swimmers divided into two groups of plyome...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007